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Reaction heat estimation in continuous chemical
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Abstract

The problem of the on-line estimation of the reaction heat in a continuous stirred tank reactor (CSTR) from temperature measurements is
addressed in this paper. The proposed uncertainty observer is based on differential algebraic techniques, such that the algebraic observability
condition of the uncertainty from temperature measurements is easily verified and the observer structure is very simple, which lead to
feasible implementation. The observer proposed is robust against noisy measurements and sustained disturbances. The good performance
of the observer is shown by means of numerical simulations.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The continuous stirred tank reactors (CSTRs) are widely
used in the chemical industry, e.g. in polymerization, petro-
chemical, pharmaceutical, biochemical, etc. Therefore, their
importance in the industry is great, nowadays the demands
in security, efficiency, environmental restrictions and so on
makes the process engineers to apply more sophisticated
techniques in modeling, monitoring and controlling strate-
gies for obtaining high performance in the processes.

Generally speaking, the evaluation of reaction heats is a
difficult task in chemical processes, due the complexity of
the related physico-chemical phenomena. This led us to con-
struct uncertain mathematical models of this process, such
that the problem of on-line estimation of reaction heats must
be tackled. Currently, estimation theory is one of the most
active research area necessary to obtain on-line estimates of
unknown terms related to mathematical models for process
identification and control purposes. Schuler and Schmidt
[1] used an uncertainty estimator based on calorimetric
balances to infer the reaction heats in chemical reactors.
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Alvarez-Ramirez et al. [2] used this estimation methodology
coupled with a linearizing controller to regulate temperature
in FCC units like Aguilar et al. [3] who employed this control
scheme too for the substrate regulation in a continuous biore-
actor, but for dynamic estimation of uncertain terms, these
class of strategies become unstable when the measurements
are noisy, because the derivative related to the accumulation
terms cannot be calculated adequately, which can lead to
poor closed-loop performance or instabilities in the process.

Georgakis and coworkers [4] proposed a Kalman filter-
ing technique to estimate kinetics terms in a polymerization
reactor with good results, and following this research line,
Aguilar et al. [5] using filtering techniques, designed a non-
linear controller based on observer for the regulation of tem-
perature in a CSTR with complex behavior. In this kind of
estimation methodologies based on observer Kalman struc-
tures, the convergence analysis of the observer is difficult be-
cause the observer gain is based on an approximation of the
covariance matrix related with the estimation error. Besides,
it has the problem of the initial condition proposed for the
observer equation and thepeakingphenomena can become
closed-loop leading to the unstable behavior of the system.

2. Mathematical background

In the beginning of the century, Ritt [6] introduced the
differential algebra with the main idea related to bring
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the theory of systems of differential equations, which are
algebraic in the unknowns and their derivatives some of
the completeness enjoyed by the theory of systems of alge-
braic equations. This mathematical approach has recently
been shown to be the most effective tool for understanding
basic questions such as input–output inversions and realiza-
tions [7–9]. Now, before showing the proposed estimation
methodology, the following definitions must be considered
[10,11]:

Definition 1. A differential field extensionL/K is given by
two differential field,L andK, such that:

1. K ⊆ L.
2. The derivation ofK is the restriction toK of the derivation

of L.

Definition 2. Let u be a differential scalar indeterminate and
let k be a differential field, with derivation denoted by d( )/dt.

Definition 3. A dynamics is a finitely generated differ-
entially algebraic extensionJ/k〈u〉. This means that any
element of J satisfies a differential algebraic equation
with coefficients which are rational functions overk in
the components ofu and a finite number of their time
derivatives.

Definition 4. Let {u, y} be a subset ofJ in a dynamics
J/k〈u〉. An element inJ is said to be observable with respect
to {u, y} if it is algebraic overk〈u, y〉. Therefore a statex
is said to be observable if and only if it is observable with
respect to{u, y}.

Definition 5. A dynamicsJ/k〈u〉 with outputy is said to
be observable if and only if any state is so.

3. Problem statement

Consider the following nonlinear dynamic system related
with a mathematical model of a CSTR [12]:

Mass balance:

Ẋ0 = θ(X0e −X0)− KX2
0 (1)

Energy balance:

Ẋ1 = θ(X1e −X1)+X2 + γ (u−X1) (2)

Uncertainty dynamics (reaction heat):

Ẋ2 = f (X1, X2) (3)

System output:

Y = X1 (4)

whereX0 is the reactive concentration,K the kinetic con-
stant,X1 the reactor temperature,X2 the uncertain term re-
lated with the heat generation by chemical reaction,Y the

system output,u the system input (temperature of the cool-
ing jacket) andθ andγ are the inverse of the residence time
and the heat transfer global coefficient, respectively.

We consider the subsystem given by Eqs. (2)–(4). From
this, the following differential algebraic equations can be
obtained:

X1 − Y = 0 (5)

Ẏ + (θ + γ )Y − θX1e − γ u−X2 = 0 (6)

Now, a new concept called uncertainty algebraically observ-
able is introduced:

Definition 6. An elementXu in J is said to be uncertainty
algebraically observable ifXu satisfies a differential alge-
braic equation with coefficients overk〈u, y〉.

From Definitions 5 and 6, along with the differential alge-
braic equations (5) and (6), the pair uncertainty–temperature
i.e. {X1, X2} is universally observable in the Diop–Fliess
sense [11].

The corresponding input–output representation of the sys-
tem (2) and (3) is given by:

Ÿ + (θ + γ )Ẏ = γ u̇+ f (X1, X2) (7)

which can be represented in a generalized observability
canonical form using the following change of variables:

ηi = di−1Y

dt i−1
(8)

to obtain

η̇1 = η2, η̇2 = �(η1, η2, u̇), Y = η1 (9)

Now, as it can be seen from the nature of the system given by
Eq. (9), a standard structure of a Luenberger type observer
based with a copy of the system plus measurement error
correction is not realizable since the termΦ is unknown.
Therefore, the following observer is proposed in order to
filter an estimate ofη1 andη2, respectively:

˙̂η1 = η̂2 − lτ−1(η1 − η̂1) (10)

˙̂η2 = −l2τ−1(η1 − η̂1) (11)

finally from Eq. (6), the reaction heat is evaluated by the
following equation:

X̂2 = η̂2 − θ(X1e − η̂1)− γ (u− η̂1) (12)

the idea to estimateη1 and filtering it is that this variable
is directly the reactor temperature (system output) and in
accordance with Eq. (12), if the temperature measurements
are noisy, the noise would be transmitted to the estimation
of the reaction heat which can lead to poor performance. In
this work, it is assumed that the reactor temperatureX1 ≥
0 is bounded for allt > 0. Consequently, the concentra-
tions inside the reactor are bounded input to bounded output
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Fig. 1. Filtering process of the reactor temperature measurements(l = 0.01).

state. It is also assumed that the uncertain term remains
bounded. The restraint of the heat of reaction (uncertain
term) is common for a wide class of chemical reactions and
is a consequence of the characteristics of the mathematical
modeling commonly employed; chemical reactions are usu-
ally Lipschitz with respect to temperature. It is not hard to
see that global Lipschitz of�HfR(yf , Tr) property is found
if the functionalityR(yf , Tr) with respect to temperature is
of Arrhenius type.

The estimation errors are defined as:

e1 = η1 − η̂1 (13)

Fig. 2. On-line estimation of the reaction heat(l = 0.01).

e2 = η2 − η̂2

l
(14)

Considering Eqs. (13) and (14), the dynamic of the estima-
tion error is defined as

Ė = lAE +Ω(η1, η2) (15)

where:

E =
[
e1
e2

]
, A =

[
τ−1 1
τ−1 0

]
, Ω =

[
0
Φ

l

]
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Fig. 3. Filtering process of the reactor temperature measurements considering sustained disturbances(l = 0.01).

Considering the following assumptions:

1. Ω is bounded, i.e.||Ω|| ≤ Γ .
2. There exist two positive constantsj > 0 andλ > 0, such

that:

||exp(lAt)E|| ≤ j exp(−lλt)||E||

Now, solving Eq. (15), the next expression is obtained:

E = exp(lAt)E0 +
∫ t

0
exp{lA(t − s)}Ω ds (16)

Considering the assumptions 1 and 2 and taking norms

Fig. 4. On-line estimation of the reaction heat, considering sustained disturbances(l = 0.01).

for both sides of the Eq. (16), the following equation is
generated:

||E|| ≤ j exp(−lλt)
[
||E0|| − jΓ

l2λ

]
+ jΓ

l2λ
(17)

in the limit, whent → ∞:

||E|| ≤ jΓ

l2λ
(18)

The above inequality implies that the estimation error can
be as small as is desired if the observer gainl is chosen large
enough.
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Fig. 5. Uncertainty estimation in the transformed space(l = 0.01).

Note that if the system output is corrupted by additive
noise i.e.Y = η1 + δ and the noise is considered bounded
such that||δ|| ≤ �, a similar methodology used to analyze
the estimation errorE can be applied in order to prove that
the steady-state estimation error becomesj (Γ + ∆)/l2λ

which proves robustness against noisy measurements.

4. Numerical experiments

In this section, numerical simulations were carried out in
order to show the performance of the proposed observer. The
reaction heat generated in a CSTR is estimated via temper-
ature measurements, which are corrupted with a white noise
of ±2 K around the current temperature value. The observer

Fig. 6. Filtering process of the reactor temperature measurements(l = 0.001).

filters adequately the noisy temperature measurements as
can be observed in the Fig. 1, which are used in the estima-
tion of the reaction heat although it corresponds to the dif-
ferential algebraic structure. The observer is able to infer the
reaction heat with a good performance as shown in Fig. 2.

Additionally to the noisy temperature measurements,
a sustained disturbance in the reactor temperature inlet
X1e = X1eo + 4 sin(Πt) is now introduced to the system
and the observer proposed is able to estimate the corre-
sponding terms, as can be seen in Fig. 3 corresponding
to noisy reactor temperature measurement and the related
temperature filtered. Fig. 4 shows the performance of the
observer to infer the reaction heat in the chemical reactor
and finally Fig. 5 shows the performance of the observer
in the new coordinates, which is adequate too, in spite of
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Fig. 7. On-line estimation of the reaction heat(l = 0.001).

different initial conditions for the system and the observer.
For Figs. 1–5 the value of the observer parameter gainl is
l = 0.01 and the parameterτ = 1.0.

Figs. 6 and 7 are related with the effect of the observer
parameter gainl. The valuel = 0.001 is chosen to show the
effect of a small gain, as can be seen the observer do not
converge to the values of the corresponding terms, temper-
ature and heat of reaction, respectively, which is in accor-
dance with the theoretical convergence properties developed
in Section 3.

5. Concluding remarks

A high gain observer to infer reaction heats in a CSTR
via temperature measurements is designed using differential
algebraic tools. The concept of uncertainty algebraic observ-
ability condition was introduced to estimate the uncertain
term from the output selected and is easily obtained from
this approach, besides the implementation of the observer is
very simple with the transformation proposed. The perfor-
mance of the observer developed is satisfactory in spite of
noisy temperature measurements and sustained disturbances
under the high gain condition.
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